Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.

نویسندگان

  • Qihui Fan
  • Yi E Wang
  • Xinxin Zhao
  • Joachim S C Loo
  • Yi Y Zuo
چکیده

Inhaled nanoparticles (NPs) must first interact with the pulmonary surfactant (PS) lining layer that covers the entire internal surface of the respiratory tract and plays an important role in surface tension reduction and host defense. Interactions with the PS film determine the subsequent clearance, retention, and translocation of the inhaled NPs and hence their potential toxicity. To date, little is known how NPs interact with PS, and whether or not NPs have adverse effects on the biophysical function of PS. We found a time-dependent toxicological effect of hydroxyapatite NPs (HA-NPs) on a natural PS, Infasurf, and the time scale of surfactant inhibition after particle exposure was comparable to the turnover period of surfactant metabolism. Using a variety of in vitro biophysicochemical characterization techniques, we have determined the inhibition mechanism to be due to protein adsorption onto the HA-NPs. Consequently, depletion of surfactant proteins from phospholipid vesicles caused conversion of original large vesicles into much smaller vesicles with poor surface activity. These small vesicles, in turn, inhibited biophysical function of surfactant films after adsorption at the air-water interface. Cytotoxicity study found that the HA-NPs at the studied concentration were benign to human bronchial epithelial cells, thereby highlighting the importance of evaluating biophysical effect of NPs on PS. The NP-PS interaction mechanism revealed by this study may not only provide new insight into the toxicological study of nanoparticles but also shed light on the feasibility of NP-based pulmonary drug delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles

Hydroxyapatite Ca10(PO4)6(OH)2 nanoparticles have been successfully synthesized by the wet chemical precipitation method at 60 °C in the presence of biocompatible natural surfactant-lecithin. The composition and morphology of nanoparticles of hydroxyapatite synthesized with lecithin (nHAp-PC) was studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning el...

متن کامل

The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

BACKGROUND Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO(2)) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition,...

متن کامل

Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film.

Graphene oxide (GO) is the most common derivative of graphene and has been used in a large range of biomedical applications. Despite considerable progress in understanding its cytotoxicity, its potential inhalation toxicity is still largely unknown. As the pulmonary surfactant (PS) film is the first line of host defense, interaction with the PS film determines the fate of the inhaled nanomateri...

متن کامل

Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in v...

متن کامل

Synthesis of hydroxyapatite nanoparticles trough polyelectrolyte-modified microemulsions

The paper is focused on the formation of hydroxyapatite nanoparticles (HAp) in polyelectrolyte-modified microemulsions, in a microemulsion template phase consisting of cyclohexane, water, cationic surfactant and cosurfactant, in the presence of Na-polyacrylate (PAA) as an anionic polyelectrolyte. It is shown that PAA, can be incorporated into the individual inverse microemulsion droplets. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2011